Gene co-expression networks shed light into diseases of brain iron accumulation
نویسندگان
چکیده
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention.
منابع مشابه
I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملEffects of co-administration of ghrelin agonist (GHRP-2) and GH on TNF-α, IL-6 and iNOS gene expression induced by LPS in the mouse brain
The aim of this study was to examine the anti-inflammatory effects of co-administration of growthhormone-releasing peptide-2 (GHRP-2) and growth hormone (GH) on tumor necrosis factor-α (TNF-α),interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) gene expression induced by LPS in the mousebrain. Thirty-five male NMRI mice (25±5 g) were injected through the mouse tail vein with saline,...
متن کاملAnalysis of Exon 19 and 39 of ATM Gene in Brain Tumors; Considering the P53 Accumulation
Many studies have been focused on cytogenetic and molecular genetic defects in brain tumors; therefore the role of ATM as a tumor suppressor gene in these tumors is poorly considered. In this study mutation analysis of exon 19 and 39 of ATM gene and P53 accumulation were investigated by PCR-SSCP, sequencing, and flow cytometry . Four polymorphisms including D1853N, IVS 38-8 T?C, F858L, P872T we...
متن کاملاثر نانوذرات اکسید آهن و میدان مغناطیسی در عصب زایی و بیان ژن Nestin بعد از ایسکمی ریپرفیوژن در رت
Background: Ischemic stroke is a common cause of adult disability and death worldwide that leads to damage in neuronal networks and neurovascular units and ceasation of brain functions. In this study the effect of iron oxide nanoparticles and magnetic field on neurogenesis after ischemic reperfusion (IR) in rat model was evaluated. Methods: In this experimental study 50 male Wistar rats weighi...
متن کاملUnraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology
Iron overload is a hallmark of many neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases. Unbound iron accumulated as a consequence of brain aging is highly reactive with water and oxygen and produces reactive oxygen species (ROS) or free radicals. ROS are toxic compounds able to damage cell membranes, DNA, and mitochondria. Which are the mechanisms involved i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 87 شماره
صفحات -
تاریخ انتشار 2016